Science

Monster Machines: If A Jet Engine Can Survive GE's Wind Tunnel, It Can Survive Anything

Even though today’s largest aeroplane engines are capable of producing more than 45,000kg of thrust, they are still susceptible to ice build-up in the sub-zero temperatures at cruising altitude. To ensure the next generation of mega-engines can withstand the worst that Old Man Winter can throw at them, GE has set up a testing centre in the coldest, most inhospitable frozen environment this side of Hoth — Winnipeg, Canada.

In 2006, GE opened a brand new state-of-the-art cold-weather test cell at Mirabel International Airport in Montreal. But in just four years the technology had outgrown the facilities capabilities — such is the march of aerospace advancement — and was told to pack up and move by airport authorities.

Since building another test facility in the Canadian provice of Quebec — specifically laying a large enough concrete pad — would be prohibitively expensive, GE instead forged an alliance with StandardAero and together they built the $US50 million Testing, Research and Development Center (TRDC) at Winnipeg’s James A. Richardson International Airport.

To meet stringent FAA guidelines, aero engines are put through a gruelling set of trials in sub-zero temperatures between 4C and -20C to gauge their performance and endurance as well as rate the ability to handle bird strikes and icing. For temperatures that low, Winnipeg was the obvious choice. It’s so cold there that Kevin Kanter, engineering executive of GE Aviation’s Design & Integration Systems Engineering, estimated that the “icing window” (the part of the year when it sufficiently frosty to perform the tests) is “at least a month” wider than Quebec’s, which runs from November to March.

The test cell itself is seated upon a 14m x 15m x 1.8m concrete foundation anchored into the ground by 14m wide, 9m deep caissons. This reinforcement is necessary to support not only the five (potentially six) mega engines that GE is currently developing — including three iterations of the CFM Leap, the Passport 20, the NG34 and the GE-9X — but also a massive array of seven 250HP variable frequency fan motors and their 5m diameter augmentor tube and 16m tall exhaust stack. These fans produce 68,000kg of thrust, move air at 1270kg/s and consume 2MW of power at peak output. They’re also really noisy. To minimise the disturbance to the nearby airport, the test cell is surrounded by 15m tall noise-dampening walls. The wall of cold air mixes with 125 separate jets of hot water to generate the simulated ice cloud.

The cost of operating such a massive test cell: a cool million every month.

[Aviation Week, AIN, Flight Global, Business Wire]

Picture: GE


Have you subscribed to Gizmodo Australia's email newsletter? You can also follow us on Facebook, Twitter, Instagram and YouTube.

Product Finder

Find more great products at