Tagged With black holes

4

Vicky Kalogera, a Northwestern University physicist, took her week of much-needed vacation in Utah this past August. She promised her family she'd stay off of email for a week. It wasn't a real promise, of course, but she was going to try. She'd arranged the perfect day for August 17. Her husband was going to take the kids hiking in Arches National Park while she'd spend the whole day at the spa. Right as she left her room, she just had to give her email a peep. The deluge brought the news: Telescopes and detectors across the world were making a monumental observation.

1

Arguably the most exciting recent development in astronomy was 2016's announcement of the discovery of gravitational waves, waves that literally ripple the shape of space itself, created by violent events like black holes colliding. But every gravitational wave discovery had always been done with only two detectors, meaning that scientists only knew what caused the waves -- but couldn't really figure out where in the sky they came from.

0

Science fiction doesn't exist to make movies about the stuff we know about -- it explores the unknown physics, astronomy, biology and chemistry where real uncertainty about topics can lead to compelling, believable stories. That's what makes black holes such a popular subject; light can't escape them, maybe they're portals across space and time, and they seem to break the rules. But who needs fiction when there are already incredibly strange mysteries in the real world?

0

Should you find yourself inside a black hole, you will die. Should you find yourself near a black hole, you will also die. Aside from the fact that these massive, light-trapping monsters are impossible to reach on human timescales, there are simply not many ways measure the plasma surrounding them without dying or destroying the experiment. Scientists have to make do by recreating some of the features in the lab.

0

If you were to rank the wildest things in the universe, there are a few obvious contenders: Gamma rays, fast radio bursts and quasars, for example. But no list would be complete without black holes and the black hole's less-dense cousins, the neutron star. These hyper-compressed things can do some mind-boggling warping to the shape of space itself. So, what happens if one were to eat the other?

7

The past few years have been incredible for physics discoveries. Scientists spotted the Higgs boson, a particle they'd been hunting for almost 50 years, in 2012, and gravitational waves, which were theorised 100 years ago, in 2016. This year, they're slated to take a picture of a black hole. So, thought some theorists, why not combine all of the craziest physics ideas into one, a physics turducken? What if we, say, try to spot the dark matter radiating off of black holes through their gravitational waves?

1

Black holes may be one of the universe's most bizarre phenomena. They're literally divide-by-zeros in the sky, places where the mathematics of Albert Einstein's theory of general relativity falls apart. These dense behemoths have such strong gravitational fields that time stops, and all futures point directly at the centre, and light crossing the boundary, or event horizon, can't escape. But no one's ever taken a picture of a black hole, and scientists want to change that.

0

It's no secret that supermassive black holes are heartless beasts: These objects of immense gravity that let nothing escape, not even light, have fascinated astronomers since the early 20th century. While it's believed that so-called supermassive black holes lurk at the centre of most galaxies, including our own, there's still much we don't know about how they formed, or why, except to remind us of our own mortality.

0

Black holes are the strong, silent type -- an age-old enigma. Hubble estimates that there are roughly 100 million black holes in our galaxy alone, but because their gravitational pull is so intense, light can't escape. So even with the most advanced equipment, "stray" black holes wandering in space are nearly impossible to find.