Beyond The Hype Of Lab-Grown Diamonds

Beyond The Hype Of Lab-Grown Diamonds

Billions of years ago when the world was still young, treasure began forming deep underground. As the edges of Earth’s tectonic plates plunged down into the upper mantle, bits of carbon, some likely hailing from long-dead life forms were melted and compressed into rigid lattices. Over millions of years, those lattices grew into the most durable, dazzling gems the planet had ever cooked up. And every so often, for reasons scientists still don’t fully understand, an eruption would send a stash of these stones rocketing to the surface inside a bubbly magma known as kimberlite.

There, the diamonds would remain, nestled in the kimberlite volcanoes that delivered them from their fiery home, until humans evolved, learned of their existence, and began to dig them up.

The epic origin of Earth’s diamonds has helped fuel a powerful marketing mythology around them: that they are objects of otherworldly strength and beauty; fitting symbols of eternal love. But while “diamonds are forever” may be the catchiest advertising slogan ever to bear some geologic truth, the supply of these stones in the Earth’s crust, in places we can readily reach them, is far from everlasting. And the scars we’ve inflicted on the land and ourselves in order to mine diamonds has cast a shadow that still lingers over the industry.

Some diamond seekers, however, say we don’t need to scour the Earth any longer, because science now offers an alternative: diamonds grown in labs. These gems aren’t simulants or synthetic substitutes; they are optically, chemically, and physically identical to their Earth-mined counterparts. They’re also cheaper, and in theory, limitless. The arrival of lab-grown diamonds has rocked the jewellery world to its core and prompted fierce pushback from diamond miners. Claims abound on both sides.

Growers often say that their diamonds are sustainable and ethical; miners and their industry allies counter that only gems plucked from the Earth can be considered “real” or “precious”. Some of these assertions are subjective, others are supported only by sparse, self-reported, or industry-backed data. But that’s not stopping everyone from making them.

This is a fight over image, and when it comes to diamonds, image is everything.

Same, but different

The dream of lab-grown diamond dates back over a century. In 1911, science fiction author H.G. Wells described what would essentially become one of the key methods for making diamond—recreating the conditions inside Earth’s mantle on its surface—in his short story The Diamond Maker. As the Gemological Institute of America (GIA) notes, there were a handful of dubious attempts to create diamonds in labs in the late 19th and early 20th century, but the first commercial diamond production wouldn’t emerge until the mid-1950s, when scientists with General Electric worked out a method for creating small, brown stones.

Others, including De Beers, soon developed their own methods for synthesizing the gems, and use of the lab-created diamond in industrial applications, from cutting tools to high power electronics, took off.

According to the GIA’s James Shigley, the first experimental production of gem-quality diamond occurred in 1970. Yet by the early 2000s, gem-quality stones were still small, and often tinted yellow with impurities. It was only in the last five or so years that methods for growing diamonds advanced to the point that producers began churning out large, colourless stones consistently. That’s when the jewellery sector began to take a real interest.

Today, that sector is taking off. The International Grown Diamond Association (IGDA), a trade group formed in 2016 by a dozen lab diamond growers and sellers, now has about 50 members, according to IGDA secretary general Dick Garard. When the IGDA first formed, lab-grown diamonds were estimated to represent about 1 per cent of a $20 billion rough diamond market. This year, industry analyst Paul Zimnisky estimates they account for 2-3 per cent of the market.

He expects that share will only continue to grow as factories in China that already produce millions of carats a year for industrial purposes start to see an opportunity in jewellery.

“This year some [factories] will come up from 100,000 gem-quality diamonds to one to two million,” Zimnisky said. “They already have the infrastructure and equipment in place” and are in the process of upgrading it.

(About 150 million carats of diamonds were mined last year, according to a global analysis of the industry conducted by Bain & Company.)

Production ramp-up aside, 2018 saw some other major developments across the industry. In the summer, the Federal Trade Commission (FTC) reversed decades of guidance when it expanded the definition of a diamond to include those created in labs and dropped ‘synthetic’ as a recommended descriptor for lab-grown stones.

The decision came on the heels of the world’s top diamond producer, De Beers, announcing the launch of its own lab-grown diamond line, Lightbox, after having once vowed never to sell man-made stones as jewellery.

“I would say shock,” Lightbox Chief Marketing Officer Sally Morrison told Earther when asked how the jewellery world responded to the company’s launch.

While the majority of lab-grown diamonds on the market today are what’s known as melee (less than 0.18 carats), the tech for producing the biggest, most dazzling diamonds continues to improve. In 2016, lab-grown diamond company MiaDonna announced its partners had grown a 6.28 carat gem-quality diamond, claimed to be the largest created in the U.S. to that point. In 2017, a lab in Augsburg University, Germany that grows diamonds for industrial and scientific research applications produced what is thought to be the largest lab-grown diamond ever—a 155 carat behemoth that stretches nearly 10cm across. Not gem quality, perhaps, but still impressive.

“If you compare it with the Queen’s diamond, hers is four times heavier, it’s clearer” physicist Matthias Schreck, who leads the group that grew that beast of a jewel, told me. “But in area, our diamond is bigger. We were very proud of this.”

Diamonds can be created in one of two ways: Similar to how they form inside the Earth, or similar to how scientists speculate they might form in outer space.

The older, Earth-inspired method is known as “high temperature high pressure” (HPHT), and that’s exactly what it sounds like. A carbon source, like graphite, is placed in a giant, mechanical press where, in the presence of a catalyst, it’s subjected to temperatures of around 1,600 degrees Celsius and pressures of 5-6 Gigapascals in order to form diamond.

(If you’re curious what that sort of pressure feels like, the GIA describes it as similar to the force exerted if you tried to balance a commercial jet on your fingertip.)

The newer method, called chemical vapour deposition (CVD), is more akin to how diamonds might form in interstellar gas clouds (for which we have indirect, spectroscopic evidence, according to Shigley). A hydrocarbon gas, like methane, is pumped into a low-pressure reactor vessel alongside hydrogen. While maintaining near-vacuum conditions, the gases are heated very hot—typically 3,000 to 4,000 degrees Celsius, according to Lightbox CEO Steve Coe—causing carbon atoms to break free of their molecular bonds. Under the right conditions, those liberated bits of carbon will settle out onto a substrate—typically a flat, square plate of a synthetic diamond produced with the HPHT method—forming layer upon layer of diamond.

“It’s like snow falling on a table on your back porch,” Jason Payne, the founder and CEO of lab-grown diamond jewellery company Ada Diamonds, told me.

Scientists have been forging gem-quality diamonds with HPHT for longer, but today, CVD has become the method of choice for those selling larger bridal stones. That’s in part because it’s easier to control impurities and make diamonds with very high clarity, according to Coe. Still, each method has its advantages—Payne said that HPHT is faster and the diamonds typically have better colour (which is to say, less of it)—and some companies, like Ada, purchase stones grown in both ways.

However they’re made, lab-grown diamonds have the same exceptional hardness, stiffness, and thermal conductivity as their Earth-mined counterparts. Cut, they can dazzle with the same brilliance and fire—a technical term to describe how well the diamond scatters light like a prism. The GIA even grades them according to the same 4Cs—cut, clarity, colour, and carat—that gemologists use to assess diamonds formed in the Earth, although it uses a slightly different terminology to report the colour and clarity grades for lab-grown stones.

They’re so similar, in fact, that lab-grown diamond entering the larger diamond supply without any disclosures has become a major concern across the jewellery industry, particularly when it comes to melee stones from Asia. It’s something major retailers are now investing thousands of dollars in sophisticated detection equipment to suss out by searching for minute differences in, say, their crystal shape or for impurities like nitrogen (much less common in lab-grown diamond, according to Shigley).

Those differences may be a lifeline for retailers hoping to weed out lab-grown diamonds, but for companies focused on them, they can become another selling point. The lack of nitrogen in diamonds produced with the CVD method, for instance, gives them an exceptional chemical purity that allows them to be classified as type IIa; a rare and coveted breed that accounts for just 2 per cent of those found in nature.

Meanwhile, the ability to control everything about the growth process allows companies like Lightbox to adjust the formula and produce incredibly rare blue and pink diamonds as part of their standard product line. (In fact, these coloured gemstones have made up over half of the company’s sales since launch, according to Coe.)

And while lab-grown diamonds boast the same sparkle as their Earthly counterparts, they do so at a significant discount. Zimnisky said that today, your typical one carat, medium quality diamond grown in a lab will sell for about $5,234, compared with $8,869 for its Earth-mined counterpart—a discount of about 40 per cent. Two years ago, that discount was only 18 per cent. And while the price drop has “slightly tapered off” as Zimnisky put it, he expects it will fall further thanks in part to the aforementioned ramp up in Chinese production, as well as technological improvements.

(The market is also shifting in response to Lightbox, which De Beers is using to position lab-grown diamonds as mass produced items for fashion jewellery, and which is selling its stones, ungraded, at the controversial low price of $1,163 per carat—a discount of nearly 90 per cent.)

Zimnisky said that if the price falls too fast, it could devalue lab-grown diamonds in the eyes of consumers. But for now, at least, paying less seems to be a selling point. A 2018 consumer research survey by MVI Marketing found that most of those polled would choose a larger lab-grown diamond over a smaller mined diamond of the same price.

“The thing [consumers] seem most compelled by is the ability to trade up in size and quality at the same price,” Garard of IGDA said.

Still, for buyers and sellers alike, price is only part of the story. Many in the lab-grown diamond world market their product as an ethical or eco-friendly alternative to mined diamonds.

But those sales pitches aren’t without controversy.

Dazzling promises

As Anna-Mieke Anderson tells it, she didn’t enter the diamond world to become a corporate tycoon. She did it to try and fix a mistake.

In 1999, Anderson purchased herself a diamond. Some years later, in 2005, her father asked her where it came from. Nonplussed, she told him it came from the jewellery store. But that wasn’t what he was asking: He wanted to know where it really came from.

“I actually had no idea,” Anderson told Earther. “That led me to do a mountain of research.”

That research eventually led Anderson to conclude that she had likely bought a diamond mined under horrific conditions. She couldn’t be sure, because the certificate of purchase included no place of origin. But around the time of her purchase, civil wars funded by diamond mining were raging across Angola, Sierra Leone, the Democratic Republic of Congo and Liberia, fuelling “widespread devastation” as Global Witness put it in 2006.

At the height of the diamond wars in the late ‘90s, the watchdog group estimates that as many as 15 per cent of diamonds entering the market were conflict diamonds. Even those that weren’t actively fuelling a war were often being mined in dirty, hazardous conditions; sometimes by children.

“I couldn’t believe I’d bought into this,” Anderson said.

To try and set things right, Anderson began sponsoring a boy living in a Liberian community impacted by the blood diamond trade. The experience was so eye-opening, she says, that she eventually felt compelled to sponsor more children. Selling conflict-free jewellery seemed like a fitting way to raise money to do so, but after a great deal more research, Anderseon decided she couldn’t in good faith consider any diamond pulled from the Earth to be truly conflict-free in either the humanitarian or environmental sense.

While diamond miners were, by the early 2000s, getting their gems certified “conflict free” according to the UN-backed Kimberly Process, the certification scheme’s definition of a conflict diamond—one sold by rebel groups to finance armed conflicts against governments—felt far too narrow.

“That [conflict definition] eliminates anything to do with the environment, or eliminates a child mining it, or someone who was a slave, or beaten or raped,” Anderson said.

And so she started looking into science, and in 2007, launching MiaDonna as one of the world’s first lab-grown diamond jewellery companies. The business has been activism-oriented from the get-go, with at least five per cent of its annual earnings—and more than 20 per cent for the last three years—going into The Greener Diamond, Anderson’s charity foundation which has funded a wide range of projects, from training former child soldiers in Sierra Leone to grow food to sponsoring kids orphaned by the West African Ebola outbreak.

MiaDonna isn’t the only company that positions itself as an ethical alternative to the traditional diamond industry. Brilliant Earth, which sells what it says are carefully-sourced mined and lab-created diamonds, also donates a small portion of its profits to supporting mining communities. Other lab-grown diamond companies market themselves as “ethical,” “conflict-free,” or “world positive.”

Payne of Ada Diamonds sees, in lab-grown diamonds, not just shiny baubles, but a potential to improve medicine, clean up pollution, and advance society in countless other ways—and he thinks the growing interest in lab-grown diamond jewellery will help propel us toward that future.

Others, however, say black-and-white characterizations when it comes to social impact of mined diamonds versus lab-grown stones are unfair. “I have a real problem with people claiming one is ethical and another is not,” Estelle Levin-Nally, founder and CEO of Levin Sources, which advocates for better governance in the mining sector, told Earther. “I think it’s always about your politics. And ethics are subjective.”

Saleem Ali, an environmental researcher at the University of Delaware who serves on the board of the Diamonds and Development Initiative, agrees. He says the mining industry has, on the whole, worked hard to turn itself around since the height of the diamond wars and that governance is “much better today” than it used to be. Human rights watchdog Global Witness also says that “significant progress” has been made to curb the conflict diamond trade, although as Alice Harle, Senior Campaigner with Global Witness told Earther via email, diamonds do still fuel conflict, particularly in the Central African Republic and Zimbabwe.

Most industry observers seems to agree that the Kimberley Process is outdated and inadequate, and that more work is needed to stamp out other abuses, including child labour and forced labour, in the artisanal and small-scale diamond mining sector. Today, large-scale mining operations don’t tend to see these kinds of problems, according to Julianne Kippenberg, associate director for children’s rights at Human Rights Watch, but she notes that there may be other community impacts surrounding land rights and forced resettlement.

The flip side, Ali and Levin-Nally say, is that well-regulated mining operations can be an important source of economic development and livelihood. Ali cites Botswana and Russia as prime examples of places where large-scale mining operations have become “major contributors to the economy.” Dmitry Amelkin, head of strategic projects and analytics for Russian diamond mining giant Alrosa, echoed that sentiment in an email to Earther, noting that diamonds transformed Botswana “from one of the poorest [countries] in the world to a middle-income country” with revenues from mining representing almost a third of its GDP.

In May, a report commissioned by the Diamond Producers Association (DPA), a trade organisation representing the world’s largest diamond mining companies, estimated that worldwide, its members generate nearly $6 billion in direct revenue for employees and contractors, along with another $10 billion in benefits via “local procurement of goods and services.” DPA CEO Jean-Marc Lieberherr said this was a story diamond miners need to do a better job telling.

“The industry has undergone such changes since the Blood Diamond movie,” he said, referring to the blockbuster 2006 film starring Leonardo DiCaprio that drew global attention to the problem of conflict diamonds. “And yet people’s’ perceptions haven’t evolved. I think the main reason is we have not had a voice, we haven’t communicated.”

But conflict and human rights abuses aren’t the only issues that have plagued the diamond industry. There’s also the lasting environmental impact of the mining itself. In the case of large-scale commercial mines, this typically entails using heavy machinery and explosives to bore deep into those kimberlite tubes in search of precious stones.

Some, like Maya Koplyova, a geologist at the University of British Columbia who studies diamonds and the rocks they’re found in, see this as far better than many other forms of mining.

“The environmental footprint is the footprint of digging the hole in the ground and crushing [the rock],” Koplyova said, noting that there’s no need to add strong acids or heavy metals like arsenic (used in gold mining) to liberate the gems.

Still, those holes can be enormous. The Mir Mine, a now-abandoned open pit mine in Eastern Siberia, is so large—reportedly stretching 1,188.72m across and 1,700 feet deep—that the Russian government has declared it a no-fly zone owing to the pit’s ability to create dangerous air currents. It’s visible from space.

While companies will often rehabilitate other land to offset the impact of mines, kimberlite mining itself typically leaves “a permanent dent in the earth’s surface,” as a 2014 report by market research company Frost & Sullivan put it.

“It’s a huge impact as far as I’m concerned,” said Kevin Krajick, senior editor for science news editor at Columbia University’s Earth Institute who wrote a book on the discovery of diamonds in far northern Canada. Krajick noted that in remote mines, like those of the far north, it’s not just the physical hole to consider, but all the development required to reach a previously-untouched area, including roads and airstrips, roaring jets and diesel-powered trucks.

Diamonds grown in factories clearly have a smaller physical footprint. According to the Frost & Sullivan report, they also use less water and create less waste. It’s for these reasons that Ali thinks diamond mining “will never be able to compete” with lab-grown diamonds from an environmental perspective.

“The mining industry should not even by trying to do that,” he said.

Of course, this is capitalism, so try to compete is exactly what the DPA is now doing. That same recent report that touted the mining industry’s economic benefits also asserts that mined diamonds have a carbon footprint three times lower than that of lab-grown diamonds, on average. The numbers behind that conclusion, however, don’t tell the full story.

Growing diamonds does take considerable energy. The exact amount can vary greatly, however, depending on the specific nature of the growth process. These are details manufacturers are typically loathe to disclose, but Payne of Ada Diamonds says he estimates the most efficient players in the game today use about 250 kilowatt hour (kwH) of electricity per cut, polished carat of diamond; roughly what a U.S. household consumes in 9 days. Other estimates run higher.

Citing unnamed sources, industry publication JCK Online reported that a modern HPHT run can use up to 700 kwH per carat, while CVD production can clock in north of 1,000 kwH per carat.

Pulling these and several other public-record estimates, along with information on where in the world today’s lab diamonds are being grown and the energy mix powering the producer nations’ electric grids, the DPA-commissioned study estimated that your typical lab-grown diamond results in some 511 kg of carbon emissions per cut, polished carat. Using information provided by mining companies on fuel and electricity consumption, along with other greenhouse gas sources on the mine site, it found that the average mined carat was responsible for just 160 kg of carbon emissions.

One limitation here is that the carbon footprint estimate for mining focused only on diamond production, not the years of work entailed in developing a mine. As Ali noted, developing a mine can take a lot of energy, particularly for those sited in remote locales where equipment needs to be hauled long distances by trucks or aircraft.

There’s also the question of just how representative the report’s energy consumption estimates for lab-grown diamonds are. While he wouldn’t offer a specific number, Coe said that De Beers’ Group diamond manufacturer Element Six—arguably the most advanced laboratory-grown diamond company in the world—has “substantially lower” per carat energy requirements than the headline figures found inside the new report.

When asked why this was not included, Rick Lord, ESG analyst at Trucost, the S&P global group that conducted the analysis, said it chose to focus on energy estimates in the public record, but that after private consultation with Element Six it did not believe their data would “materially alter” the emissions estimates in the study.

Finally, it’s important to consider the source of the carbon emissions. While the new report states that about 40 per cent of the emissions associated with mining a diamond come from fossil fuel-powered vehicles and equipment, emissions associated with growing a diamond come mainly from electric power. Today, about 68 per cent of lab-grown diamonds hail from China, Singapore, and India combined according to Zimisky, where the power is drawn from largely fossil fuel-powered grids. But there is, at least, an opportunity to switch to renewables and drive that carbon footprint way down.

And some companies do seem to be trying to do that. Anderson of MiaDonna says the company only sources its diamonds from facilities in the U.S., and that it’s increasingly trying to work with producers that use renewable energy. Lab-grown diamond company Diamond Foundry grows its stones inside plasma reactors running “as hot as the outer layer of the sun,” per its website, and while it wouldn’t offer any specific numbers, that presumably uses more energy than your typical operation running at lower temperatures.

However, company spokesperson Ye-Hui Goldenson said its Washington State ‘megacarat factory’ was cited near a well-maintained hydropower source so that the diamonds could be produced with renewable energy. The company offsets other fossil fuel-driven parts of its operation by purchasing carbon credits.

Lightbox’s diamonds currently come from Element Six’s UK-based facilities. The company is, however, building a $137-million facility near Portland, Oregon, that’s expected to come online by 2020. Coe said he estimates about 45 per cent of its power will come from renewable sources.

“The reality is both mining and manufacturing consume energy and probably the best thing we could do is focus on reducing energy consumption,” Coe said. “That’s something we’re focused on in Lightbox.”

In spite of that, Lightbox is somewhat notable among lab-grown diamond jewellery brands in that, in the words of Morrison, it is “not claiming this to be an eco-friendly product.”

“While it is true that we don’t dig holes in the ground, the energy consumption is not insignificant,” Morrison told Earther. “And I think we felt very uncomfortable promoting on that.”

The real real

The fight over how lab-grown diamonds can and should market themselves is still heating up.

On March 26, the FTC sent letters to eight lab-grown and diamond simulant companies warning them against making unsubstantiated assertions about the environmental benefits of their products—its first real enforcement action after updating its jewellery guides last year.

The letters, first obtained by JCK news director Rob Bates under a Freedom of Information Act request, also warned companies that their advertising could falsely imply the products are mined diamonds, illustrating that, even though the agency now says a lab-grown diamond is a diamond, the specific origin remains critically important. A letter to Diamond Foundry, for instance, notes that the company has at times advertised its stones as “above-ground real” without the qualification of “laboratory-made.” It’s easy to see how a consumer might miss the implication.

But in a sense, that’s what all of this is: A fight over what’s real.

Another letter, sent to FTC attorney Reenah Kim by the nonprofit trade organisation Jewellery Vigilance Committee on April 2, makes it clear that many in the industry still believe that’s a term should be reserved exclusively for gems formed inside the Earth. The letter, obtained by Earther under FOIA, urges the agency to continue restricting the use of the terms “real,” “genuine,” “natural,” “precious,” and “semi-precious” to Earth-mined diamonds and gemstones. Even the use of such terms in conjunction with “laboratory grown,” the letter argues, “will create even more confusion in an already confused and evolving marketplace.”

JVC President Tiffany Stevens told Earther that the letter was a response to a footnote in an explanatory document about the FTC’s recent jewellery guide changes, which suggested the agency was considering removing a clause about real, precious, natural and genuine only being acceptable modifiers for gems mined from the Earth.

“We felt that given the current commercial environment, that we didn’t think it was a good time to take that next step,” Stevens told Earther. As Stevens put it, the changes the FTC recently made, including expanding the definition of diamond and tweaking the descriptors companies can use to label laboratory-grown diamonds as such, have already been “wildly misinterpreted” by some lab-grown diamond sellers that are no longer making the “necessary disclosures.”

Asked whether the JVC thinks lab-grown diamonds are, in fact, real diamonds, Stevens demurred.

“It’s a nuanced reality that we’re in,” she said. “They are a type of diamond.”

Change is afoot in the diamond world. Mined diamond production may have already peaked, according to the 2018 Bain & Company report. Lab diamonds are here to stay, although where they’re going isn’t entirely clear.

Ziminsky expects that in a few years—as Lightbox’s new facility comes online and mass production of lab diamonds continues to ramp up overseas—the price industry-wide will fall to about 80 per cent less than a mined diamond. At that point, he wonders whether lab-grown diamonds will start to lose their sparkle.

Payne isn’t too worried about a price slide, which he says is happening across the diamond industry and which he expects will be “linear, not exponential” on the lab-grown side. He points out that lab-grown diamond market is still limited by supply, and that the largest lab-grown gems remain quite rare.

Payne and Ziminsky both see the lab-grown diamond market bifurcating into cheaper, mass-produced gems and premium-quality stones sold by those that can maintain a strong brand. A sense that they’re selling something authentic and, well, real.

“So much has to do with consumer psychology,” Zimnisky said.

Some will only ever see diamonds as authentic if they formed inside the Earth. They’re drawn, as Kathryn Money, vice president of strategy and merchandising at Brilliant Earth put it, to “the history and romanticism” of diamonds; to a feeling that’s sparked by holding a piece of our ancient world. To an essence more than a function.

Others, like Anderson, see lab-grown diamonds as the natural (to use a loaded word) evolution of diamond. “We’re actually running out of [mined] diamonds,” she said. “There is an end in sight.” Payne agreed, describing what he sees as a “looming death spiral” for diamond mining.

Mined diamonds will never go away. We’ve been digging them up since antiquity, and they never seem to lose their sparkle. But most major mines are being exhausted. And with technology making it easier to grow diamonds just as they are getting more difficult to extract from the Earth, the lab-grown diamond industry’s grandstanding about its future doesn’t feel entirely unreasonable.

There’s a reason why, as Payne said, “the mining industry as a whole is still quite scared of this product.”


The Cheapest NBN 50 Plans

It’s the most popular NBN speed in Australia for a reason. Here are the cheapest plans available.

At Gizmodo, we independently select and write about stuff we love and think you'll like too. We have affiliate and advertising partnerships, which means we may collect a share of sales or other compensation from the links on this page. BTW – prices are accurate and items in stock at the time of posting.