Living With Solar Batteries: Three Australian Households Share Their Story

Image: Gizmodo

Home batteries have never seemed like a smarter or more viable choice for households with solar since the Tesla Powerwall burst onto the scene less than two years ago. Soon after it wasn't just Tesla -- other options were popping up on the market, a vast variety of batteries for different types of homes with different needs. We set out to speak to three early adopters of battery technology to see what it's like to live with solar batteries, to measure how its changed their energy use and -- most importantly -- their power bills.

Gizmodo's Energy Smart Home series is powered by Hello Grid. Explore the Future of Australia’s smart energy network.


Jeff Pollard: The Suburban Tesla Powerwall

The first house we looked at was a fairly average suburban block near Campbelltown in Sydney, owned by Jeff Pollard. Jeff had installed a small, less than 3kW system of 11 solar panels back in 2010 when the NSW Solar Bonus Scheme was first introduced. They had served him well thus far, but he knew that his panels were going to be next to useless when the Scheme ended in January of this year.

The feed-in tariffs they would be getting from their excess electricity would be slashed from 20c/kWh to around 5c -- well below the price they were paying for electricity from the grid. "When we got the details that they were cutting the feed-in tariffs, we did some research into what it was going to cost us," Jeff said. "There was no benefit to having those solar panels at the rates we were getting."

The decision to put in a battery was made fairly quickly. "We decided no one was going to get our money for that power," Jeff explained. "Because we were already generating enough for our own electricity needs." They decided on the Tesla Powerwall mostly as a matter of convenience -- the Powerwall's slim form made it ideal for a small suburban block, while most other batteries were too large to easily find a place for.

Jeff chose the Powerwall because of its compact size. Image supplied.

Going through Natural Solar for the installation, Jeff found out that his original, almost eight year old solar array was just too old to hook up to the new battery. It would have been possible to do, but the retrofit would have cost more than just installing a new array of panels -- so that is exactly what they did.

A new 6kW system was installed in and around the existing panels, with a total of 24 new panels added. The two systems function as separate entities, with the old system feeding directly back into the grid and the new system going into the battery. The installation happened last September -- unfortunately only a few months before the new and improved Powerwall 2 went on sale in Australia -- and the entire system cost just under $19,000, including the installation of a smart meter.

Melbourne Man Says Powerwall 2 Will Drop His Power Bill To $0

Melbourne's first Powerwall 2 has been installed at a three-bedroom, one storey house in Coburg. Brendan Fahey and his wife Josephine added Tesla's shiny new battery to their home to complement their existing solar panels, after Brendan calculated that the Powerwall 2 could take his energy bill down almost to zero.

Read more

Still, the original 7kWh Powerwall seems to be doing quite well for the Pollards, even if it has already been replaced by its more powerful successor. Even with four people living in the house, Jeff has calculated a payback period of only four years for the system -- well below common estimates for similar systems.

While the family's bills have always been quite cheap thanks to their solar panels -- around $200-250 per quarter -- the new system has given some amazing results. Jeff has received two bills since the installation in September. The first had him paying only $16 after the feed-in tariffs were paid out, while the second bill, covering the summer period from January through March, was $176 in credit. This is despite March being almost entirely rained out, Jeff pointed out, with most of the month averaging a solar production of only around 10kWh per day -- compared to January where daily production could be as high as 40kWh.

Some of the stats from Jeff's system in January (left) and July (right). Note that Jeff is only able to monitor the solar system connected to the battery, not the separate system exporting to the grid.

As the weather progressed into winter his solar generation did drop, and the household's energy use increased, with a number of cold days causing the heater to be run more than usual. Daily generation in June was a lot lower than the summer months, dropping down to an average of around 20kWh per day. "In the summer we were exporting roughly as much as we were importing, now in the winter we're using a bit more and generating a bit less," Jeff said.

Overall, a number of smart decisions have made this system a worthwhile investment. It's not just the battery and the solar panels -- the smart meter and SolarEdge's monitoring dashboard help Jeff to keep an eye on both input and output. He's also swapped his electricity contract over to Diamond Energy -- a renewable-focused retailer with higher feed-in tariffs and even a system where they'll pay up to 32c/kWh to take extra solar energy during peak demand times in the summer.

"The system is working exactly how we planned it to work," Jeff concluded. There were a few minor issues with the installation, he said, but everything was rectified without too much fuss. Now that it's up and running, the system pretty much runs itself, bringing the Pollards not just savings but earnings on their electricity bill.


Adrian Shand: The Off-Grid Redflow ZCell

The second battery installation we looked at is a far cry from Jeff's suburban Sydney home. Adrian Shand and his partner live in an old stone cottage in Central Victoria, some ways north of Ballarat. The remote property is entirely disconnected from the grid, which means Adrian has to generate all the electricity the home uses on site.

For a house like Adrian's, a conventional battery like the Powerwall just isn't going to cut it. As most of his household energy has to be drawn from the battery, he can't risk using one that would provide intermittent or low power as it cycles down -- cases where traditional battery installations would simply draw from the grid. Instead, Adrian went with a flow battery -- the Australian-manufactured Redflow ZCell, to be precise.

As the property has always been off-grid, the ZCell isn't Adrian's first battery. Previously they were using a 1.5kWh lead-acid battery that was inherited with the house, along with a backup petrol generator. The upgrade in storage capacity has been pretty dramatic, however, with the old lead-acid battery being replaced by not one ZCell but two, with a total capacity of 20kWh. With a 5.2kW array of 21 solar panels, the Shands have much more storage than you'd see on a conventional, grid-connected battery installation. It makes sense, though -- the set up never generates more energy than the batteries can take in, as without a grid connection there's no way to benefit from any excess energy.

The installation, which went in around three months ago, cost around $56,000 including solar panels, cables and inverters -- the whole package. To most people it would sound prohibitively expensive, until you realise that the cost of getting a house like Adrian's connected to the grid would cost around $200,000. In this case, investing in the robust battery system is a far more cost-effective solution. While the house had existing solar and a battery, Adrian decided to treat everything as a brand new installation, upgrading almost everything including the solar panels and the cabling.

Adrian said that now was the time to upgrade because he was thankfully in a position to afford it, and that he chose the ZCells because of their cutting-edge zinc-bromine flow chemistry. "It is 100 per cent based on the chemistry," he said. "Which is far and away better than anything else. The main criteria were stability, and getting the most bang for buck, the most power that we could get for the least money. It wasn't necessarily a per kWh cost, it was more the longevity and lifespan of the battery."

"Further to that was ease of use," Adrian added, bringing up a key point of difference between flow batteries and their conventional cousins. "Lead-acid setups are very hands on, there's a lot of daily maintenance involved and we wanted to get away from that and move into the 'smart battery' idea." It wasn't just the zinc-bromine batteries they were looking at -- Adrian investigated a number of alternatives, including the more well-known lithium-ion batteries, but the ZCell had the most to offer in terms of stability and resistance to long-term degradation.

The two ZCells and battery enclosure on Adrian's property

"Saying that, we are early adopters and we do understand that we've picked up a technology that is in its infancy, but as the chemistry goes the zinc-bromide is just offering much better theoretical output and stability."

While Adrian has no conventional power bills to compare costs from, their reliance on the petrol generator has dramatically decreased. While the house is designed to be efficient in its energy use, only using around 5kWh/day, the difference in generation with the new setup is still dramatic. Previously they were using a full tank of petrol in the generator every three days on average, at a cost of around $25. Now, the generator only needs to be turned on once a fortnight, rarely needing to run a full tank.

Given that we caught up in the middle of winter, and with Adrian's home being located in one of the lowest areas for solar energy in Australia, the last few weeks have been some of the worst yet for solar generation. Even then the system has served robustly. Despite a warning that the ZCell may not function properly if the internal temperature dropped below 15 degrees, Adrian reports that the batteries have kept running perfectly even through a cold, Victorian -2 degree night.

Adrian's energy consumption during a cold week in late June.

For Adrian, this installation has been more than just a way to power his house -- it's a proof-of-concept for grander future plans. In the works are a potential 'mini-grid'-like system that would include not just the house, but a planned editing and mixing studio on the property for Adrian's work as a freelance sound engineer. "These batteries will deliver clean power for when I have people bringing 10,000 amps into the studio," he explained.

While Adrian does have a few qualms with the ZCell, they're fairly minor compared to the benefits -- he mainly just doesn't like the way they look. "They're the Excel spreadsheet of batteries," he joked, not a huge fan of Redflow's utilitarian design. He has one other warning for people looking to install a ZCell at their own home -- they do make some noise. He describes it like a fridge's hum, but with a more 'gurgling' quality of noise. It's not a problem when the batteries have their own enclosure on the property, but it might cause some issues for people looking to situate the batteries in or close to their homes.

The ZCell's built-in dashboard is more utilitarian

I finished off our chat with a hypothetical -- if Adrian was connected to the grid, would he still make the investment in batteries? His answer was an immediate yes. "I can't see why people wouldn't be investigating this seriously," he says, explaining that even his mother has asked him about putting batteries on her suburban block.

For Adrian, however, living off-grid is perfect. "I didn't realise this would be such a big deal for me, but I go to the letterbox and I don't receive any bills," Adrian explained. "There's not this sort of constant demand on your finances. It's a small thing, but it really does make you feel like you're doing things the way you want to do them."


Bjorn Sturnberg: The Student Housing Co-Op With Enphase Batteries

The rooftop at Stucco. Image: Gizmodo

The last installation we looked at wasn't on a house at all, but on a student housing co-op with 40 residents -- Stucco, in Newtown. The massive project made use of the easily scaleable Enphase modular AC Battery -- and it even holds the record of being the largest battery installation yet for Enphase, and its first project on an apartment block.

The project was the brain-child of former resident Bjorn Sturmberg, who stayed at Stucco for five years while studying for his PhD in solar. He explains that, as Stucco is run fully as a co-operative, projects like these are not uncommon. Projects on this scale, however, are.

He looked at the "Stucco Storage and Solar Project" as a "fun little summer project just to finish off my time here," but it soon turned into so much more than that. While he had tried to put solar panels on the roof a number of times before, it was always just too expensive for the co-op (which caters to low-income students) to afford.

The reason it finally got off the ground was thanks to a City Of Sydney grant for sustainability projects on apartment blocks. Stucco was given the maximum grant of $80,000 -- but even that was not enough for the whole project.

The battery enclosure at Stucco hosts 36 Enphase batteries. Image: Gizmodo

The technical side of the Stucco installation was very straightforward, and once it got off the ground all 114 solar panels and 36 Enphase batteries went in in around three days. The biggest problem the project faced was regulatory -- and without hundreds of hours in pro-bono legal support the project would have quickly become prohibitively expensive. To get the system running on an apartment block with many individual residents, Stucco had to get a license to sell electricity -- which was relatively easy -- and approval to become an embedded network -- which was much harder.

An embedded network refers to an apartment building where the building owners sell electricity directly to the tenants, rather than letting each tenant choose their own retailer. The Australian Energy Regulator is generally against embedded networks, as they take away the tenants' freedom of choice -- even if the alternative means they're paying less for clean energy generated onsite. It's a tricky issue when you add solar into the mix, and one that Bjorn goes into at length himself:

How Apartments Can Join Australia's Solar Energy Boom

While there are now more solar panels in Australia than people, the many Australians who live in apartments have largely been locked out of this solar revolution by a minefield of red tape and potentially uninformed strata committees.

Read more

Thankfully, the physical system works perfectly. The roof hosts a 30.2kW solar system which is linked to 40kWh of useable storage through a system of stacked Enphase batteries. It was an easy system to install at Stucco, with lots of good roof space for solar and an enclosure for the batteries down the bottom of the building -- though the latter required a measure of fireproofing before the batteries could go in.

"The aim was to achieve around 80 per cent self-sufficiency, and so far we've managed around 76 per cent," Bjorn says. "The amount of solar generation is significantly more than total consumption, so the whole building is carbon negative, which is a really satisfying place to be." To be more exact, Stucco is producing 128 per cent of the building's demand. Of course, even the power they do have to buy from the grid is certified 'green power' through Powershop, so it's all carbon neutral. "But that's just because we're a bunch of do-gooder students," Bjorn explained. When solar generation is factored in, the building's net carbon abatement since the installation has been 11,459kg.

A screenshot from Stucco's monitoring system on a high-yield day in February.

While the building only gets a feed-in tariff of 8.2c/kWh, which Bjorn is "very much looking forward to seeing increase eventually," the savings gained by the battery installation make up for it. Since installing the system, Stucco has seen a 90 per cent saving on grid bills -- where before they were buying about $1200 from the grid per month, now it's down to only $110 a month.

Some of those savings go to the residents and some go to the co-op, with Stucco set up as a retailer that sells solar energy on to the tenants. The system is fairly complicated, monitoring how much energy tenants use and when. If they happen to be using the grid power they'll be charged the same amount as the grid electricity price, while solar power is sold at a discounted rate of around 20-25 per cent. "The incentive remains to shift your behaviour to using [electricity] during the daylight hours, or with the batteries, during the early evening," Bjorn said.

A more recent screenshot showing generation and usage in May.

In fact, the batteries have usually been enough to take Stucco through most of the night -- "the power that we are pulling from the grid is predominantly between midnight and when the sun comes up," Bjorn explained, "or at moments when the batteries can't provide enough instantaneous power -- so maybe 90 per cent of the load is met by the batteries, and just a little bit of the peak has to come out of the grid just to support them."

Despite the project's success, Bjorn isn't here to tell people to follow his lead with Stucco's project. In fact, he wouldn't recommend it at all. "This is really hard and not particularly scaleable in the way we did it." There's a reason there's not much solar on strata, and it's not going to become any easier until new regulations are introduced to specifically cater for solar-powered apartment blocks. Some apartments take an easier route, installing solar to power common areas and hallway lighting, for example, rather than using it in every tenant's apartment.

Still, the Stucco project is a valuable resource for anyone looking to do something similar. "We got this funding to see what could be done, and then to learn a lot, and then to show everyone what we learned," Bjorn said. He has gone on from this project to found his own company that's aimed at putting solar on rental properties -- though the new project, SunTenants, focuses on single dwellings instead of whole blocks. Despite all the difficulties, Bjorn's hard work has left a lasting impact on Stucco. "It's still, in the end, the best thing to have done, and if an apartment block has the time and the energy and the resources, they totally should do it."


Comments

    Great article,
    but anyone with a mortgage please consider the cost benefits of solar vs mortgage payments from a financial stand point if your looking to save money.

      I think you are wrong:

      On a $600K loan, the total interest over 30 years at 4.39% is $480,368.
      On a $580K loan, the total interest over 30 years at 4.39% is $463,356 - a saving of $17,012.

      With a solar/battery system you could save more than that in a decade.

        But what about upfront cost of buying the system? What if a significantly better and cheaper system eventuates?

        It’s not just interest, it’s the opportunity cost and uncertain return that makes it harder to decide whether to do it or not. We’re assuming that we’ll see no major change to grid generation (e.g move to renewables, reduces scarcity of fossil fuels thus reduced costs). The equation isn’t so simple.

          Like any technology, there will always be cheaper systems on the horizon. Power bills in this country aren't going down anytime soon though, as long as the ROI is 5 or so years (as battery systems are now getting to) I really can't see a downside.

    If only there was a practical option for renters. A portable take where you live solar set up.

      i fine a long extension cord plugged into the neighbors really reduces my bills

        Ha! Isn't there a Simpsons episode where Homer does that with Flanders?

      Well technically there are, just not really on a whole house scale. If you look at camping stores there are lots of portable solar options. http://www.bcf.com.au/store/power-household-batteries/solar-power/571643?page=1&pageSize=24&sort=-ProductCreated

      While you're not going to run your whole house you could certainly set up a panel (or two) in the back yard to subsidize some of your costs. eg: Charging phones and laptops, running a small DC fridge and so on. I don't think they'd save money by themselves, but if you were the sort of person who was going to go camping as well, then it's a win-win.

      Check out community Solar projects and peer 2 peer energy networks. If yo own solar panels on a community site then it's your electricity that being generated for however you see fit, either to power you rented apartment or give to the old lady next door.

    We bought a foreign made battery system for $17,000 about 5 years ago but it was a disaster! Took more than a year before it could be installed and switched on, after which it just kept on failing. So we are having an new, sealed battery system installed (looked at Tesla but found them to be impossible). The new system has a greater capacity than the old system even when it was running and will cost us less than $6,000. No profit/loss figures yet but in theory it will make us independent. If we need more battery capacity the system allows us to just plug in another battery pack up to a maximum of 15!

      What brand is your new battery? Let us know how it goes after it's been running for a while!

    Let me preface my next comment by saying I know why they don't.......but the government should make it mandatory that all new houses built must included sufficient solar power system to run that specific house as if it was off grid.

      To be fair though solar power isn't cheap to construct, and you still need the resources to build the panels... the investment to run the average house totally off grid wouldn't be inexpensive. For a government to do that they'd have to trade it off against pushing the grid towards renewable energy instead - which might(?) be more cost effective than every single house having its own power supply.

      The distributed model is massive waste of money.

      We have these things called power companies. They're amazing. They are even what you could call experts at power! Benefiting from the scales of economy without retail & middle men to add & add & add extra costs and unreliability into the situation.

      That way all existing buildings regardless if its owner occupied or rented (rentals will never get solar) will benefit.

      Last edited 17/07/17 2:17 pm

        So why are "the experts" investing in distributed networks like the AGL project in SA where Jay flamed Josh.
        Cutting out the middle is happening with Peer 2 Peer network's and community solar is making it possible for renters to have the benefit of cheap, green energy.

        I'm sorry to say it but you are exactly wrong. The distributed model is the only possible answer. Those power companies have served us well in many regards but they're increasingly experts in sucking extra money out of governments, ie, us, and they're not going to stop polluting any time soon. Your words about economies of scale were correct up until recently, even if the bit about middle men was nonsense. And their economics never include the cost of their pollution. The real cost. Now solar etc are getting cheaper than the emitters, as was always going to be the case. To recap, you're exactly wrong.

          I'm saying that you're wrong. Read my reply to lee978 above.

          The power companies are not some big bad wolf you have imagined them to be. Our Government sets and regulates what they can and cannot do. To-date we have had nothing but ambiguity over what power companies can or cannot do and we STILL do. Our community can't even agree on what our policies are right now. You cannot blame power companies for treading water. Jesus our GOVERNMENTs ran most of our power generation in states up until recently & still do in some states so get your facts straight.

          The green power movement has only until recently gained traction. To make claim that all power companies have been polluting without care is as reckless. Most power generating facilities were invested & built a very long time ago and funny that require a ROI otherwise the charge to customers skyrockets. This is all before renewable power was even remotely economical. To suggest that back then they should have bought inefficient solar power cells and thrown money away when little to no science existed like it does today is dangerously ignorant.

          Last edited 18/07/17 10:52 am

        I can't figure out if this is irony or not.

        Just tweeted from Andy Vesey "He's what you could call expert at power" He runs Australia's biggest power company.
        Think about how refrigeration changed the way we get food. That's how much battery storage will change the energy market #ACES2017

        AGL boss Andy Vesey says world’s largest virtual power plant in Adelaide critical to addressing nation’s energy challenges
        http://www.adelaidenow.com.au/business/agl-boss-andy-vesey-says-worlds-largest-virtual-power-plant-in-adelaide-critical-to-addressing-nations-energy-challenges/news-story/1df4184682b04059e3dc60b7612f41ec

          GEOFF Perkins has “decimated” his power bill by installing solar panels and solar-powered storage batteries So by spending estimated $25,000 (or more detail missing) he smashed his bills by saving $500 pa on their bills? What. The whole article was either really badly put together or intentionally left out detail so it can make baseless claims.

            $500p/a with an existing 3kW system with generous rebate.
            What the article doesn't provide is how much was being saved/generated by the solar.
            He was going to be losing the generous rebate. So that also needed to be factored.
            Not enough info to give a full analysis.
            We'd need:
            His total energy consumption in last year.
            c/kW cost of grid supply
            Amount of solar generated in last year.
            c/kW of solar generation
            The difference in his bills with existing panels
            The cost of his bills assuming 0 kW of solar (Just as a baseline)
            Then we need 1 year worth of bills after the system has been installed to look at how much he potentially saved.
            So.. Not sure what ROI would be.

      Can you imagine the outrage from the electricity suppliers?

    Thanks for this article. Interesting. A general, big picture comment. The current interest in batteries is good to see but most of them can only be a temporary measure. You can be sure Tesla is already planning how to productionize the next, massively better battery tech and then give discounts to the people buying the current stuff. Lithium ion can't possibly be the best and cheapest way to store power, not for fixed batteries. We're not even talking about the many other ways to store energy some of which will be turned into. I give the current tech 5 years at most. At most.

Join the discussion!

Trending Stories Right Now