Dead Set Legends: Australian Scientists Just Found More Gravitational Waves

Dead Set Legends: Australian Scientists Just Found More Gravitational Waves
Image: An infographic explaining LIGO's gravitational-wave discovery.

An international team of scientists – including 21 researchers from The University of Western Australia – has detected gravitational waves for the third time in history. The first time was in September 2015, then again in December 2015.

Gravitational waves are waves of energy, ripples in the fabric of space-time. The discovery of the first wave proved a prediction by Einstein 100 years ago.

The newfound black hole, formed by the pair’s merger, has a mass about 49 times that of our sun. This fills in a gap between the masses of the two merged black holes detected previously by LIGO, which had solar masses of 62 (first detection) and 21 (second detection).

These collisions produce more power during the instant before the black holes merge, than is radiated as light by all the stars and galaxies in the universe at any given time. The recent detection is the farthest yet, with the black holes located about 3 billion light-years away.

The black holes in the first and second detections are located 1.3 and 1.4 billion light-years away, respectively.

The third and most recent detection, called GW170104, was made on January 4 this year. The latest finding solidifies the case for a new class of black hole pairs, or binary black holes, with masses that are larger than what had been seen before by the Laser Interferometer Gravitational-wave Observatory (LIGO) detectors.

Australian Scientists Just Found Something That Makes Gravitational Waves Even Cooler

Researchers at the Monash Centre for Astrophysics, looking at gravitational waves, have just discovered a thing called "Orphan Memory". </p> <p>Here's what the deal is and why it's so cool.

Read more

Professor David Blair, from UWA’s School of Physics, said the event released more energy in its last few orbits than that of rest of the entire universe.

“Yet when the ripples passed the LIGO detector they made it vibrate by just one attometer, or 0.000000000000000001 metres,” Professor Blair said.

Despite this tiny displacement, the scientists were able to demonstrate the black holes exhibited a property known as “spin”.

“This is the first time that we have evidence that the black holes may not be aligned, giving us just a tiny hint that pairs of black holes may form in dense stellar clusters,” Professor Blair said.

Postdoctoral Fellow Qi Chu, from UWA’s School of Physics, is part of a team led by OzGrav Chief Investigator Professor Linqing Wen that is racing to create faster ways to crunch the LIGO data to minimise the time between the gravitational waves hitting earth and an alert being sent out for follow-up observations.

“The LIGO detector lets us feel the gravitational wave, and we are on a mission to see the source of the event by looking through powerful telescopes,” Ms Chu said.

How Australian Researchers Contributed To The Discovery Of Gravitational Waves

For the first time in history, astronomers have observed elusive gravitational waves -- ripples in space time caused by a violent cosmic event taking place in the distant Universe. Scientists from Australian universities and CSIRO are celebrating their part in the discovery of the waves, which were predicted by Albert Einstein 100 years ago.

Read more

An international group of researchers, including the Australian International Gravitational Research Centre, is also investigating how to fine-tune the sensitivity of the gravitational waves detector, leading to improved detection of future gravitational waves and electromagnetic observational, and potentially more exotic sources.

LIGO is funded by the National Science Foundation (NSF), and operated by MIT and Caltech, which conceived and built the project. Financial support for the Advanced LIGO project was led by NSF with Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council) and Australia (Australian Research Council) making significant commitments and contributions to the project.

More than 1,000 scientists from around the world participate in the effort through the LIGO Scientific Collaboration, which includes the GEO Collaboration. LIGO partners with the Virgo Collaboration, a consortium including 280 additional scientists throughout Europe supported by the Centre National de la Recherche Scientifique (CNRS), the Istituto Nazionale di Fisica Nucleare (INFN), and Nikhef, as well as Virgo’s host institution, the European Gravitational Observatory.

The ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) is funded by the Australian Government through the Australian Research Council Centres of Excellence funding scheme. OzGrav is a partnership between Swinburne University (host of OzGrav headquarters), the Australian National University, Monash University, University of Adelaide, University of Melbourne, and University of Western Australia, along with other collaborating organisations in Australia and overseas.